
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

http://www.sun.com/blueprints

Configuring OpenSSH for the
Solaris™ Operating
Environment

By Jason Reid - Solaris System Test (SST)

Sun BluePrints™ OnLine - January 2002

Part No.: 816-3250-10
Revision 1.0, 12/17/2001
Edition: January 2002

Please
Recycle

Copyright 2002 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, JumpStart, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in theUnited
States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license
from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR
52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et ladécompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, JumpStart, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service,de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaîtles
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de
Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

1

Configuring OpenSSH for the
Solaris™ Operating Environment

Networks have never been secure. As the demand on open networks for remote

access has grown, the risks of compromised systems and accounts has kept pace.

Tools for securing networks, such as OpenSSH, were developed to counter the

threats of password theft, session hijacking, and other network attacks. However,

these tools come with the price of planning, configuration, and integration. This

article provides recommendations for configuring and managing OpenSSH.

Specifically, this article deals with client and server configuration, key handling, and

the integration of OpenSSH into existing environments that run the Solaris™

Operating Environment (Solaris OE.) For details about the compilation of

OpenSSH’s components, consult the Sun BluePrints™ OnLine article “Building and

Deploying OpenSSH for the Solaris Operating Environment” (July, 2001).

This article does not discuss general OpenSSH usage. Consult the OpenSSH man

pages and SSH, The Secure Shell for that information. For technical details about the

underlying protocols, refer to the Internet Drafts of the Secure Shell (SECSH)

working group.

This article was drafted using OpenSSH 2.9p2.

Security Policy

The primary purpose of security policy is to inform those responsible for protecting

assets such as hardware, software, and data of their obligations. Management

establishes a security policy based on the risks it is willing to tolerate. The policy

itself does not set goals, but serves as a bridge between management’s goals and the

technical implementation.

2 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

OpenSSH was designed to be a secure replacement for unsafe network commands

such as rlogin , rsh , rcp , telnet , and ftp . The way you configure OpenSSH

should reflect a site’s local security policy. For example, you might consider whether

password authentication is appropriate, or whether a more rigorous two-factor

(public-key based) authentication is required. Further, you might consider whether

the policy allows OpenSSH to tunnel TCP and X windows connections and whether

it allows for remote access to internal web sites. Again, OpenSSH configuration

should match local policy.

If a site does not have a security policy, one should be crafted before configuring

OpenSSH. For guidance on crafting a security policy, consult the references in the

Bibliography.

Configuration

OpenSSH has many capabilities not all of which are appropiate depending on your

local policy. Configure OpenSSH to conform to your policy. OpenSSH is configured

in three places: compilation (compile time), server configuration, and client

configuration. Compile time configuration covers basic details such as which

entropy source to use, the location of configuration files, and whether binaries are

SUID. Compile time configuration has the advantage that it can not be overriden.

Server configuration concerns how and to whom the OpenSSH server should

present itself on the network. Server configuration details include which protocols

and authentication methods are offered, which users have been granted access, and

how much logging of each connection should be done. Server configuration can not

be overridden by the client. Client configuration covers which server to

communicate with, server verification, and user ease of use.

Configuration in order of precedence is: software compile time, the server

configuration file (sshd_config), client command line options, individual client

configuration file (~/.ssh/config), and the global client configuration file

(ssh_config). The location of sshd_config and ssh_config vary depending

upon compile time options. They are usually located in /etc , /etc/ssh , or

/usr/local/etc .

A defensive in-depth strategy of setting the preferred configuration redundantly at

compile time, server configuration, and client configuration is recommended. This

reduces the chances that a single accidental misconfiguration will weaken the

integrity of the system.

Example client and server configuration files that document the recommended

configuration are presented later in this document. Not all of the options presented

in the files are described in this document.

Recommendations 3

Recommendations

OpenSSH offers a number of features to protect network connections between two

hosts. There are choices of protocol, authentication method, port forwarding, user

access, and network access. When setting up OpenSSH, you will have to make trade

offs between security, ease of use, and legacy compatibility. The choices you make

depend on local security policy.

Protocol Support

There are two major versions of the secure shell protocol: SSH1 and SSH2. SSH1 was

the first protocol developed and has been replaced with SSH2. It is highly

recommended that you disable the use of SSH1 since the protocol has been found to

have several vulnerabilities including packet insertion attacks and password length

determination. In sshd_config and ssh_config , set Protocol to 2, as follows.

For legacy client and server support, allow SSH1 but set the default to SSH2, as

follows.

Unfortunately, many legacy clients and servers only support SSH1. Consider

upgrading legacy clients and servers to those that support SSH2. If you wish to

audit installed base of ssh servers, consider using scanssh by Niels Provos. It is

designed to scan a network and report the version strings of any ssh servers found.

(You can also use ssh-keyscan and shell scripting to accomplish the same thing in

a much less efficient manner.)

Protocol 2 only is recommended.
Protocol 2

Enable legacy support but default is Protocol 2.
Protocol 2,1

4 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

Network Access

By default, the OpenSSH server daemon listens to all network interfaces. For

workstations and other systems where accessibility is desired on all interfaces, this is

not a problem. For architectures where a single interface is dedicated to management

or administration, it is preferable not to expose OpenSSH to the other networks.

Limit network access with ListenAddress in sshd_config as shown here.

To further narrow down what the server will listen to (for example, a specific

address range or single host), use either a host-based firewall or a tool like

tcpwrappers.

Note – OpenSSH does support the use of TCP wrappers but support needs to be

compiled into the server. Consult the build documentation of OpenSSH for

information.

Connection Forwarding

OpenSSH can create a secure tunnel to provide some protection for insecure

protocols. This is referred to as connection forwarding and only works for TCP-

based connections. During connection forwarding, a local TCP port is opened and

OpenSSH waits for a connection. When OpenSSH receives a connection, it forwards

the data to the OpenSSH server on the other end. The server then sends the data to

its final destination. Responses follow the same process, in reverse.

Note – Data is protected only until it reaches the OpenSSH server. After that, it is

handled the same as normal network traffic.

Connection forwarding is useful for protecting commonly used, noncryptographic

protocols like IMAP, which is used for email. It can also be used to provide remote

users with access to internal resources such as news, email, and web access. If policy

is such that remote users are to be granted access to these resources, enable

connection forwarding.

There are two caveats with connection forwarding. Firstly, connection forwarding is

an all or nothing mechanism. Once forwarding is allowed, the client can forward

any port to any location on the remote side. If this is an issue, consider using host-

based firewalls on the OpenSSH server to limit connections. Secondly, because traffic

Listen only on management network
ListenAddress 192.168.0.10

Recommendations 5

that travels through connection forwarding is encrypted, neither a firewall, nor an

intrusion detection system can detect when abnormal events occur. The OpenSSH

server on the remote side is traffic agnostic. It does not know if data coming out is a

normal IMAP request for a message or if it is buffer overflow exploit against the

IMAP server. Plan firewall and intrusion detection sensors accordingly. Add the

following to sshd_config to allow TCP forwarding.

An example of a client forwarding in ssh_config .

Gateway Ports

Gateway ports work in conjunction with connection forwarding. Normally,

connection forwarding allows only the local host to send data to the other side of a

connection. By using a gateway port, you enable other machines to connect and

forward data. In effect, gateway ports create a tunnel from one network to another

network. This is highly risky and in general should always be disabled. For example,

an user sitting in an airport connected over a 802.11b wireless link with gateway

ports turned on and a local forward to an internal web server would allow everyone

in the immediate vicinity access to the web server. Set the following in both

sshd_config and ssh_config .

X Forwarding

OpenSSH can also securely tunnel X traffic. Because the X protocol travels in the

clear, it is vulnerable to sniffing and hijacking. OpenSSH emulates an X server on the

remote side and passes traffic back through the tunnel to the local client. In addition

Server configuration
AllowTCPForwarding yes

client configuration
Allow remote users access to an internal web server.
LocalForward 8080 www.corp.acme.com:80

Server and client configuration
GatewayPorts no

6 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

to its usefulness for remote users, this can also help decrease the potential for users

to use xhost + to disable all access controls. Add the following lines to both

sshd_config and ssh_config .

The following is an example of the values of $DISPLAY on a local host and over an

X forwarded tunnel.

User Access

Some sites require that a banner be displayed once users connect to a system, but

before they log in. If this is required, set the banner to /etc/issue in

sshd_config , as shown in the following example, so only one banner exists for the

whole system.

The default login grace time is ten minutes. This value is too high. Consider

reducing it in the sshd_config to thirty or sixty seconds as shown here.

User access control lists can be specified in OpenSSH; however, no part of the Solaris

OE honors this access control list (ACL). The two available options are to allow only

specified users access, or to specifically deny a user access. The default is to allow

Server and client configuration
X11Forwarding yes

host $ echo $DISPLAY
:0.0
host $ ssh remotehost
user@remotehost’s password:XXXXXXXX
remotehost $ echo $DISPLAY
remotehost:11.0

Banner /etc/issue

LoginGraceTime 60

Recommendations 7

anyone access. You can also specify access with group membership. Note that the

groups options only apply to the primary group (the group listed in /etc/passwd).

An example of both allow and deny ACLs in sshd_config appears as follows.

By default, the root user can log in using OpenSSH. This is fine for systems without

user accounts. However, disabling root logins and requiring administrators to use su
to root is more secure and leaves an audit trail. If you have remote jobs that run as

root, you can configure OpenSSH to only execute scripts. This requires the use of

two-factor (key-based) authentication. If root logins are required at your site, only

use key-based authentication as discussed later in this article. To set this up, add the

following to sshd_config .

Authentication

OpenSSH supports multiple forms of authentication: the traditional login and

password, two- factor (public-key-based), and host-based. Each method has different

benefits. Password authentication fits well in existing structures. Two-factor

authentication offers improved security, although with higher maintenance costs.

Host-based authentication provides the most convenience, although it is extremely

unsafe and easily abused.

Password authentication is the most common way for systems to authenticate users.

The drawback to this method is that passwords can be shoulder-surfed, guessed

with dictionaries, and sniffed in transit across the network. While OpenSSH protects

passwords by encrypting them, this only prevents sniffing while they are in transit,

and can’t do anything to minimize the effects of other threats. To counter other

threats, OpenSSH provides two-factor or key- based authentication.

Allow sysadmin staff
AllowGroups staff

Or limit a particular user’s access off a machine
DenyUsers kaw alex

Only add one of these settings.
Forces sysadmins to su.
PermitRootLogin no
If remote jobs require root priviledges.
PermitRootLogin forced-commands-only

8 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

Key-based authentication is a challenge and response system which is grounded in

the mathematics of public-key cryptography. There are essentially two elements: a

public key that resides on all servers the user will access, and a private key that only

the user knows. The private key is additionally protected by a passphrase. This

system is more secure than passwords alone because in addition to being based on a

passphrase the user knows, it is also based on something the user has in their

possession, the private key.

The system works roughly as follows. OpenSSH generates a key pair, stores the

public key on the OpenSSH server, and leaves an encrypted version of the private

key on the user’s machine with a passphrase. When the user connects to the server,

OpenSSH prompts the user for a passphrase to decrypt the private key. The

OpenSSH client and server then go through a challenge and response to prove that

the two keys are related. If the server agrees that user really does have the private

key, it grants the user access. The private key is never stored on the server or

transmitted to it, and the public key is useless without the private key, and vice

versa. For a system to be subverted (leaving out program flaws like bugs), someone

would have to acquire a copy of the private key and the passphrase.

Because private keys are often stored on NFS home directories, good passphrases are

critical to the success of this approach. Examples of bad phrases might include

simple sentences with no punctuation and no capitalization, or extremely common

phrases like “to be or not to be.” Examples of good phrases include phrases or

words the user can easily remember and won’t write down. If a user looses a

passphrase, you will need to generate a new key pair, as a passphrase cannot be

recovered. Further, passphrases tend to be resistant to shoulder surfing due to their

length.

Host-based authentication trusts a connection based on where it comes from. This is

very unsafe and easily abused. Rlogin and rsh also use this method of

authentication as denoted by their dependence on .rhosts files.

Key Handling 9

It is recommended that sites disable any semblance of host-based authentication.

Sites that support a large number of internal users should consider staying with

passwords to reduce training costs. Sites with remote users and sites that need to

automate jobs should consider using key-based authentication. Add the following to

sshd_config for the preceding recommendations.

Key Handling

Public-key cryptography is used in two places: server identification and two-factor

authentication. This means that there are keys to be managed, protected,

transported, and eventually destroyed. Key handling is the largest obstacle to the

wide-scale deployment of OpenSSH. Because OpenSSH was designed as a point-to-

point solution with no public-key infrastructure in place, all key operations must be

done manually. This is not a problem for small deployments; however, the problem

does not scale.

Because they are the foundation for systems security, keys must be handled with

care. If private keys are divulged, security is compromised because the system

appears to be secure when, in fact, it is not.

Host Keys

Server identification is accomplished by a host key pair. The openssh.server
init script, which you can find on the Sun BluePrints website, generates a key set if

it cannot find a host key. This key set is used to identify the server to the client. The

private key remains private to ensure the integrity of the system. The client

Disable unsafe hosts based authentication
HostbasedAuthentication no
RhostsAuthentication no
IgnoreRhosts yes
Empty passwords are trivial to guess
PermitEmptyPasswords no
For internal servers, passwords ok. Bastion hosts - no.
PasswordAuthentication yes
For remote access, automated jobs, and advanced users
PubkeyAuthentication yes

10 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

downloads the public key and compares it to its copy in known_hosts . If the key is

different than it is expected to be, a warning message is printed and the connection

is refused. The following is an example of this warning.

The problem is how to get the public host key to the client in the first place. Another

problem is what to do when the public host key has been regenerated due to loss,

server upgrade, or compromise. Having multiple users call support because of the

preceding warning message could create quite a support headache. Further, having

users change keys manually would be even less desirable.

The client configuration option StrictHostKeyChecking controls how the client

reacts to new hosts keys. If you set this option to yes , OpenSSH will not make

connections to unknown servers. If you set the option to ask , OpenSSH will prompt

users to accept a new host key if the server is unknown. If you set the option to no ,

OpenSSH will add new host keys without prompting users. The no option setting

will allow connections to servers with modified host keys.

The easiest solution is to simply disable StrictHostKeyChecking by setting it to

no . Blindly accepting new keys allows man-in-the-middle attacks and is not

recommended. If your users can be trusted to act responsibly, then set the option to

ask . Users can manually verify the host key by comparing the value in

known_hosts to the value ssh_host_key.pub , ssh_host_dsa_key.pub , or

ssh_host_rsa_key.pub depending on the protocol and public cryptographic

system used to connect. If the values don’t match, something odd has happened.

This could be caused by an active attack or possibly just a server reinstallation.

Respond according to your local policy.

$ /opt/OBSDssh/bin/ssh some_host
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-
middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
c3:6f:30:ff:84:e1:e0:d6:ef:28:e7:76:f2:49:ea:be.
Please contact your system administrator.
Add correct host key in /export/home/user/.ssh/known_hosts to
get rid
of this message.
Offending key in /export/home/user/.ssh/known_hosts:2
RSA host key for some_host has changed and you have requested
strict checking.
$

Key Handling 11

Another solution is distribute a known_hosts file to users; however, it is difficult to

do this in a secure fashion. You must decide how to securely collect public host keys

and how to securely distribute the file to the users. Again, there are problems of

scalability with any solution. Fortunately, changes to host keys should be infrequent.

The most secure method of gathering keys is to log in to every server and manually

copy the public host key to a portable medium such as a floppy disk, CD-RW, or

smartcard. For sites with a large number of machines, or during the first deployment

of OpenSSH, this burden is significant. Alternatively, you can configure a client with

StrictHostKeyChecking set to no , access every single host, copy the public host

key, exit, and then compare the key with the value in known_hosts . Display a

warning message for any server with a differing key. This can be automated using

Korn shell, PERL, or some other scripting language.

Ssh-keyscan can also be used to generate a list of host keys. The risk is getting the

host key of a compromised machine. None of the solutions are perfect. There are

some serious tradeoffs between convience and security. At the minimum, set

StrictHostKeyChecking to ask and train your users to check the host keys.

A novel use of ssh-keyscan is to regularly check for altered keys. At routine

intervals, probe the servers and check if keys have been altered. This can provide

warning of an intrusion or a non-logged installation.

With public host keys gathered, you must decide how to securely distribute the file

to users. An easy solution is to integrate the file into the deployment packaging such

as the OBSDssh package. The file can be placed on an ftp or http server. Also

distribute a preferably signed hash (MD5 or SHA-1) of the file so the user can verify

the integrity of the file. (OpenSSL has the capability of performing the hashes.)

For sites with a public-key infrastructure, a pretty good privacy installation, or a

Gnu privacy-guard installation, distribute the file and its hash cryptographically

signed.

With the hassle of users seeing an unfamiliar warning about a changed host key,

there is the temptation to archive the public and private host key pairs onto a

system. The key pairs would be replaced after a system was reinstalled or replaced.

This is risky and not recommended. Any system storing the keys would be a

tempting target and if it was comprised all keys within it would also be

compromised. It is better to deal with the occasional host key change through user

education and notices of reinstallation. If it is necessary to archive keys, store them

offline, in encrypted format, and in secure storage such as a safe.

In the event of a server compromise, destroy host keys. An attacker with knowledge

of the private portion of a host key could impersonate the host and perform a man-

in-the-middle attack.

12 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

User Identity Keys

Users may optionally authenticate themselves using cryptographic keys. Public-key

authentication is more secure than password authentication for following reasons.

First, the private-identity key is protected by a passphrase which may be much

longer than the eight character password limit. Second, neither the passphrase nor

the private key is ever transmitted to the server. There is no secret information to

snoop off the network. Third, in order to compromise an account, the intruder must

first gather the private key stored on the users machine and determine the

passphrase in the user’s head. Fourth and finally, computer generated cryptographic

keys are infeasible to guess and not subject to dictionary attacks.

Note – Poor passphrases are susceptible to dictionary attacks, so good password/

passphrase discipline is still required.

For public-key authentication, the user creates an identity key pair with

ssh-keygen . The resulting public key, either id_dsa.pub or id_rsa.pub , is then

stored in ~/.ssh/authorized_keys2 . For hosts where users are unable to place

their public keys, such as bastion hosts, public keys may be emailed to the IT

support staff. Have the staff verify out of band the key fingerprint. Once public keys

are placed into ~/.ssh/authorized_keys2 , users are no longer prompted for a

password. Instead, they will be prompted for the passphrase for the private key.

Integration 13

The following is an example an user identity key generation.

User-identity private keys still need some protection even when they are stored

encrypted. It is preferable not to store them on NFS shares where they can be copied

unnoticed. If this is not avoidable, stress the importance of good passphrases lest the

keys are decrypted offline through a passphrase dictionary attack. In the event of

portable computer theft, revoke all effected keys by removing them from the

authorized_keys file and generate new keys. In case of a server compromise,

check for the addition of backdoor user identity keys.

Integration

Integrating OpenSSH into daily usage is not difficult. It can be used as a

straightforward method for replacing rlogin , rsh , and telnet for interactive host

logins that requires minimal user retraining. It can also provide added security to

remote jobs and file transfers, it can tunnel through proxy servers to secure

connections to outside the corporate intranet, and it can add single-sign on type

convenience. You can also add your desired local configuration to the OBSDssh

package for easy deployment.

/home/user/.ssh $ /opt/OBSDssh/bin/ssh-keygen -b 2048 -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_dsa):
Enter passphrase (empty for no
passphrase):XXXXXXXXXXXXXXXXXXXXXXXX
Enter same passphrase again: XXXXXXXXXXXXXXXXXXXXXXXX
Your identification has been saved in /home/user/.ssh/id_dsa.
Your public key has been saved in /home/user/.ssh/id_dsa.pub.
The key fingerprint is:
9b:9c:c4:fb:30:66:25:46:5b:b1:95:d9:a1:90:86:f9 user@host
/home/user/.ssh $ ls
id_dsa id_dsa.pub known_hosts2 random_seed
/home/user/.ssh $ cat id_dsa.pub > authorized_keys
/home/user/.ssh $ chmod 600 authorized_keys
/home/user/.ssh $ /opt/OBSDssh/bin/ssh remote_host
Enter passphrase for key ’/home/user/.ssh/id_dsa’:
XXXXXXXXXXXXXXXX
Last login: Sun Jul 15 13:37:45 2001 from host
Sun Microsystems Inc. SunOS 5.8 Generic February 2000
remote_host /home/user $ ^D
Connection to remote_host closed.
/home/user/.ssh $

14 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

ssh-agent

Agents perform an action on the behalf of something else. Ssh-agent performs

cryptographic operations on the behalf of an ssh process. Instead of an ssh process

knowing the key to a remote host, the agent holds the key and does the work.

Ssh-agent works by setting two environment variables: SSH_AUTH_SOCKand

SSH_AGENT_PID. Because environment variables are inherited by children, setting

up ssh-agent when first logging on to an environment like CDE means all terminal

window shells will know about the agent and use it if possible. The following

example shows a system with ssh-agent running.

A ssh-agent can do nothing until a key is loaded into it. Once a key is loaded, all

of the ssh processes that are aware of that agent may use that key. This provides a

form of single signon. The drawback is that if a shell is compromised, whatever

access the loaded keys granted may be abused. Agent functionality is used to

automate actions and make user’s lives easier.

Ssh-add is used to add and list keys (referred to as identities by OpenSSH.)

Ssh-agent can remove all keys held in memory and can only add a single key at a

time. The following is an example of identity management.

Autonomous Actions

You can use OpenSSH to greatly improve the security of automated scripts and file

transfers. However, note that any kind of unattended authentication still presents

security risks. It is recommended that you use plain-text public-key authentication

(keys are not protected by a passphrase.) The file permissions of the keys must be

host $ env | grep SSH
SH_AUTH_SOCK=/tmp/ssh-PNq12519/agent.12519
SSH_AGENT_PID=12520

host $ ssh-add
Need passphrase for /home/user/.ssh/identity
Enter passphrase for user@host <passphrase>
Identity added: /home/user/.ssh/identity (user@host)
host /opt/OBSDssh $ bin/ssh-add -l
2048 d1:0b:59:c3:ff:8a:20:ff:98:84:15:98:ff:63:e8:41 user@host
(RSA1)
host $ bin/ssh-add -D All identities removed.
host $ bin/ssh-add -l
The agent has no identities.

Integration 15

strict to ensure that others cannot read them. Even with this obvious flaw, this

scheme is more secure than host-based authentication and embedding passwords

into scripts.

This process requires more setup than the traditionally insecure method of .rhosts
or /etc/host.equiv . You must generate a keyfile with ssh-keygen and distribute

it to the remote hosts and the script calling host. Next, replace rsh calls with ssh
calls as follows.

Then, replace rcp calls with scp calls as follows.

Sites desiring a more secure approach should use agents. At the system boot time, a

user would provide the passphrases needed. This scheme would not work in a

lights-out style environment.

Keys do need to be protected. Where security is a concern, load them by hand to

prevent tampering. For sites when scalability is the largest concern, place a copy of

the keys on your JumpStart™ server and copy them at installation time.

Common Desktop Environment (CDE)

A limited form of single sign on can be accomplished with ssh-agent , an X

windows-based passphrase requestor, and some shell code in a user’s

~/.dtprofile . Users will enter their passphrases once and will then be able to log

in to any host that honors the key from any local shell window. The downside is that

the security of the system is limited by the screensaver password and by user

vigilance never to leave an unattended, unlocked session.

A fairly simple X passphrase requestor is x11-ssh-askpass available at

http://www.ntrnet.net/~jmknoble/software/x11-ssh-askpass/ . The tool

is simple to build and easy to install. After building the tool, integrate it into

OpenSSH by installing it as ssh-askpass in <installpoint>/libexec . You can

rsh host -l user <command>

ssh host -i keyfile -l user <command>

rcp file user@host:<destination>

scp -i keyfile file user@host:<destination>

16 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

also integrate this tool into the deployment mechanism. An updated version of

makeOpenSSHPackage.ksh will add x11-ssh-askpass if it is present during the

OBSDssh package creation.The following are instructions for integration.

The following code fragment is needed in the ~/.dtprofile . When the users log in

to a CDE session, x11-ssh-askpass (ssh-askpass) prompts them for the

passphrases to their keys. If users have multiple keys to add, then successive calls to

ssh-add with the keys identity strings will be needed.

Proxies

You can integrate OpenSSH with a SOCKS proxy with the runsocks command.

Unfortunately, this requires the user to type a long command line or requires the

creation of a small shell script. The following is an example proxy connection shell

script.

$ su -
<password>
cp x11-ssh-askpass /usr/local/ssh/libexec/ssh-askpass
cd /usr/local/ssh/libexec
chmod 555 ssh-askpass
chown root:other ssh-askpass

This example is specific to OBSDssh
ssh agent support
if /opt/OBSDssh/bin/ssh-agent does not exist, then do not run.
if [-f /opt/OBSDssh/bin/ssh-agent]; then
 eval `/opt/OBSDssh/bin/ssh-agent‘
add keys here. Need one ssh-add per key. Consult the man page.
Only add keys if the X passphrase requestor is present.
 if [-x /opt/OBSDssh/libexec/ssh-askpass]; then
 /opt/OBSDssh/bin/ssh-add
 fi
fi

#!/usr/bin/ksh
Some sites may require SOCKS_SERVER and LD_LIBRARY_PATH
explicitly set
/usr/bin/env SOCKS_SERVER=sockserver:1080 LD_LIBRARY_PATH=/usr/
local/socks/lib \
/usr/local/socks/bin/runsocks /opt/OBSDssh/bin/ssh
remote.host.com

Summary 17

Within OpenSSH, there is also the ProxyCommand user configuration option. You

can use this option to specify a helper application that OpenSSH will read and write

to for accessing the remote host. The creation of this application is outside the scope

of this article. Consult the man page for ssh(1) and SSH, The Secure Shell for more

details.

makeOpenSSHPackage.ksh

You can add local configuration files to the OBSDssh package by replacing

sshd_config.out with your server configuration and by replacing

ssh_config.out with your global client configuration. Then, run the

makeOpenSSHPackage.ksh script to generate the OBSDssh package. You can also

modify this script to include x11-ssh-askpass as ssh-askpass into the package

as well. (Find the section where the sftp-server executable is packaged.)

Summary

The network was never secure. OpenSSH provides strong authentication, protected

network connections, support for wrapping legacy protocols, and improved remote

X windows security. The price of this protection is careful consideration of

configuration details and the issues with key handling. Being aware of the

difficulties should provide a successful integration of OpenSSH into the enterprise.

Consider disabling unsafe network services such as telnetd , ftpd , rlogind , and

rshd after the deployment of OpenSSH.

18 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

Appendix A

Example server configuration

#
Example sshd_config with recommended server defaults.
#
Protocol two for security
Protocol 2
Only if legacy clients are an issue
If legacy SSH version one support is turned on, there are
other
configuration options to consider. Consult the sshd(8)
manpage.
#Protocol 2,1
#
If your jurisdiction requires a banner
#Banner /etc/issue
#
Allow encrypted tunnels for insecure protocols
AllowTCPForwarding yes
GatewayPorts no
X11Forwarding yes
X11DisplayOffset 10
XAuthLocation /usr/X/bin/xauth
#
KeepAlive yes
#
Turn on for BSM auditing. Feature is not compatible with X
forwarding.
Do NOT turn on with a version of OpenSSH previous to 3.0.2 due
a local root exploit.
UseLogin no
#
Allow sftp access.
Subsystem sftp /opt/OBSDssh/libexec/sftp-server

Appendix A 19

#
Authentication methods
Do not allow weak rhosts style authentication
HostbasedAuthentication no
RhostsAuthentication no
IgnoreRhosts yes
Do not allow empty passwords
PermitEmptyPasswords no
Force users to su to root
PermitRootLogin no
If machine lives on the Internet, public key only
PasswordAuthentication no
PubkeyAuthentication yes
Sixty seconds to login
LoginGraceTime 60
#
User management details
Login shell should check for email and display Message Of The
Day
CheckMail no
PrintMotd no
PrintLastLog yes
Prevent tampering of user’s ~/.ssh due to poor permissions
StrictModes yes
#
#
Legacy Protocol one options
Use only if supporting legacy clients
#KeyRegenerationInterval 1800
#ServerKeyBits 768
#RSAAuthentication yes
#RhostsRSAAuthentication no

20 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

Example client configuration

#
Example ~/.ssh/config with recommended user defaults.
#
standard host with a nickname
Host foo
HostName foo.eng.acme.com
#
standard host with a port forwarded
Host test
HostName test.corp.acme.com
Allow HTTP access to the corporate internal server
LocalForward 8080 www.corp.acme.com:80
#
Host with only legacy SSH1 support
Host legacy
HostName legacy.acme.com
Protocol 1
User oldtimer
#
Global defaults
Host *
Only allow SSH version two protocol except where specifically
listed.
Protocol 2
After three connection attempts give up
ConnectionAttempts 3
Allow X display forwarding
ForwardX11 yes
Do not allow other hosts to connect to forwarded ports
GatewayPorts no
Check if host key has changed due to DNS spoofing
CheckHostIP yes
Never use the insecure rsh
FallBackToRsh no
If encountering a new host, ask about accepting the host key
StrictHostKeyChecking ask
Solaris location of xauth
XAuthLocation /usr/X/bin/xauth
Detect if unable to connect to the server temporarily
KeepAlive yes

Bibliography 21

Bibliography

Barret and Silverman, SSH The Secure Shell, 2001. O’Reilly & Associates.

CORE SDI S. A., “SSH Insertion Attack,”

http://www.corest.com/pressroom/
advisories_desplegado.php?idxsection=10&idx=131.

Griffin, Wesley. “Storing SSH Host Keys in DNS,”

draft-ietf-secsh-dns-key-format-00.txt , NAI Labs, Glenwood, MD, May

2001.

Knoble, Jim, x11-ssh-askpass,

http://www.ntrnet.net/~jmknoble/software/x11-ssh-askpass/

NEC Corporation, SOCKS, http://www.socks.nec.com/

Noordergraaf, Alex, “Solaris Operating Environment Minimization for Security: A

Simple, Reproducible and Secure Application Installment Methodology - Updated

for Solaris 8 Operating Environment” Sun BluePrints OnLine, November 2000,

http://www.sun.com/blueprints/1100/minimize-updt1.pdf

Ornaghi, Alberto and Valleri, Marco, Ettercap

http://ettercap.sourceforge.net

Provos, Niels, scanssh , http://www.monkey.org/~provos/scanssh

Reid, Jason and Watson, Keith, “Building and Deploying OpenSSH for the Solaris

Operating Environment,” Sun BluePrints OnLine, July 2001,

http://www.sun.com/blueprints/0701/openSSH.pdf

RSA Laboratories, RSA Cryptography FAQ,

http://www.rsa.com/rsalabs/faq/index.html

SECSH IETF Working Group,

http://www.ietf.org/html.charters/secsh-charter.html

Solar Designer, “Passive Analysis of SSH Traffic,” http://www.openwall.com/
advisories/OW-003-ssh-traffic-analysis.txt

van der Lubbe, Jan C A, Basic Methods of Cryptography, 1998. Cambridge University

Press

Weise, Joel, “Public Key Infrastructure Overview,” Sun BluePrints OnLine, August

2001, http://www.sun.com/blueprints/0801/publickey.pdf

22 Configuring OpenSSH for the Solaris™ Operating Environment • January 2002

Weise, Joel and Martin, Charles, “Developing a Security Policy,” Sun BluePrints

OnLine, Decemeber 2001, http://www.sun.com/blueprints/1201/
secpolicy.pdf

Author’s Bio: Jason Reid

Jason Reid is a test engineer in the Solaris System Test Group. He has also been an SQA engineer in the
Developer Tools Group. Prior to joining Sun, Jason worked at the Purdue University Computing
Center as a UNIX® system administrator, while obtaining his BS in Computer Science.

